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A Generalized Theory and New Calibration
Procedures for Network Analyzer

Self-Calibration
Hermann-Josef Eul, Member, IEEE, and Burkhard Schick, Member, IEEE

Abstract —A general theory for performing network analyzer calibra-
tion is presented. New calibration procedures are derived which allow
for partly unknown standards. The most general procedure derived is

called TAN and allows for five unknown parameters in the three

calibration standards. The values of the unknown parameters are deter-
mined during the calibration procedure via eigenvalue conditions. The

good performance of all the procedures is shown by measured results.

I. INTRODUCTION

T HE accuracy of network analyzers is enhanced by cali-
brating the setup at its measurement ports. Usually this

is performed by applying the well-known 12-term procedure

[11, [2], employing the standards thru, match, short and open;
While the 12-term procedure depends only on fully known
standards, there are two other methods in use allowing for

partly unknown standards, They were introduced in [3] as
TSD (thru, short, delay) and in [4] as TRL (thru, reflect, line)
and they can be implemented in a double reflectometer as
shown in Fig. 1 as well as in other configurations [5].

Besides the above-mentioned advantages TRL and TSD
have significant drawbacks because the electrical length of
the line must differ from multiples of the half-wavelength.
Therefore they show a lower band limit and, depending on
the frequency, periodically repeating bands of unreliable
calibration.

In [6] the results of [4] and [3] were derived in a different
mathematical manner. In [7] a family of new self-calibration
procedures was proposed allowing for a higher number of

unknown parameters in the standards. Here we will present
the theoretical background of these concepts, along with
certain generalizations and experimental results. The criteria
for the kind and the number of these unknown parameters
are deduced from eigenvalue solutions.

II. THEORY

A. Basic Model

As shown in Fig. 1, the main element of each reflectome-
ter is a four-port, which normally contains the directional
couplers or bridges to separate the waves propagating to-
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Fig. 1. Block diagram of a double reflectometer.

ward and emerging from the device under test (DUT). We
will regard it as an arbitrary four-port described by its
scattering parameters, e.g.

for the left part of the system. As boundary conditions we
use

a2A = rm~b2A and a4A = rm2b4A (2)

where the r~, are the reflection coefficients of the measure-
ment channels connected to the four-ports. To consider
mismatch losses, mixer conversion, IF amplifier transmission,
etc., we introduce complex conversion factors qi, relating the
RF signals to the readings m, of the A/D converters sam-
pling the complex IF signal at the very end of the measure-
ment channels:

m{=q1b2~ and m2 = q2b4A. (3)

Using (2) and (3) we eliminate alA, a2A, a4A, bkA, bz~, and
bd~, obtaining

(4)

where the elements A ,J are functions of the S,jA and the
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Fig. 2. To the interpretation of (9).

q~, r~i only. Equation (4) fully describes the mapping of-the
waves of interest, as and b3, onto the measurements avail-
able, ml and mz. In a similar manner we derive the mapping
for the right reflectometer,

(5)

The two reflectometers are linked twice. One linkage is
provided by the three-port (Fig. 1) controlling the energy
splitting. In practical setups it is realized as an RF switch but
any other power-splitting behavior is allowed as long as
independent readings are ensured. The behavior needs nei-
ther to be known nor to be reproducible because it does not
affect the Alj and Bij.

The second linkage of the reflectometers is provided by a
device connected to the measurement ports. It shall be
denoted in transmission parameters,

(6)

and leads due to the identities al = b3A, bl = a3A, U2 = blE!

and bz = a~E to the vector equation

which must be satisfied by the measurements. If the three-
port is turned to its second state it provides a further set of
readings m: which must satisfy (7) as well. The two vector
equations are combined to a matrix equation, yielding

and finally

M= ATB-l (9)

with the measurement matrix

(lo)

With a knowledge of A and B, which has to be provided by a
calibration procedure, one is able to evaluate the parameters
NX of a DUT from its measurement matrix MX via

NX=A-lMXB. (11)

Equation (9) can be interpreted as a cascade of two-ports
(Fig. 2). Thus the elimination process from (1) to (4) is called
the four-port to two-port reduction and provides justification

for the heuristic approach via error-boxes (e.g. [4], [3], ‘[l],

[111, [61).
It should be stressed that the cascade of two-ports is only

an interpretation, because

1) mz and m~ are not waves propagating towards the

four-port;
2) the error two-ports do not exhibit the properties of real

two-ports. For example, even if the four-ports were
only assembled with reciprocal elements, reciprocity
could not be applied for A and B as their determinants
generally do not equal unity, i.e., det A # det B # 1.

It is also possible to treat cascades of real two-port rlet-
works, e.g. de-embedding problems, in the same way as is
described here for network analyzer calibration. In the de-
ernbedding case additional assumptions can sometimes be
made such as reciprocity or symmetry, leading to special
solutions [9]. The investigations presented here are mainly
focused on network analvzer calibration. and no assumptions
of this kind will be made. However, the results
applied to de-embedding procedures as well.

B. Calibration

As will be shown in the following, the setup
calibrated by measuring three different standards

M1=ANIB-l

M2=AN2B-1

M3=AN3B-1.

Here the transmission matrices Nl, iV2, and N3,
standards are, for the moment, supposed to be
Combining (12a) and (12b) we eliminate B, yielding

can be

can be

(1’2a)

(12b)

(12C)

of the
known.

P= A-lQA with P= N2N;1 and Q= M2M:1. (13)

Further straightforward algebraic treatment leads to a
linear equation for the calibration constants

with

e=

&=fJ (14)

QIIP’-’-E Q12Pr-’

I Q,,P’-’ I Q22P’-’ - ~

(15)

where Pf-’ is the inverse matrix of the transposed P.
Because (14) is a homogeneous equation there must be at

least a one-dimensional ambiguity in the solution. This can
be accepted, as will be shown later, Actually the ambiguity is
a two-dimensional one, which can be shown as follows. Due
to (13), P and Q are similar matrices. Similar matrices have
several invariance, i.e., equal traces and determinants or,
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what is equivalent, equal eigenvalues A~,AZ [8]:

()Al O
eig(~) =eig(Q) =A1,2, A=

0A2”
(16)

where eig ( ) is the eigenvalue operator. A denotes the
matrix of eigenvalues which is related to P and Q via the
transformations

A =X- lPX and A = Y- lQY. (17)

The columns of the transforming matrices X and Y are the
eigenvectors of P and Q, respectively. As P and Q are
assumed to be known, the eigenvectors can be evaluated.
Because eigenvectors are determined except for an arbitrary
factor, we denote

x=(alil, c@2) and Y= (a~~l,ad~z). (18)

Eliminating A in (17) gives

P= XY-lQKY-l. (19)

Introducing (18) and comparing with (13), it becomes obviou~
that A remains with an ambiguity of second or~er. Thus C
only contains two independent equations, rank C <2.

In order to proceed with the calibration, (12a) and (12c)
are combined in the same way to yield

U= A-lVA with U= N3N1-1 and V= M3M~1 (20)

resulting in

‘=’‘ith‘=F%-W4’21)
with a rank of 2 as well. Finally we extract the independent
equations in (14) and (21), e.g. by using a Gaussian elimina-
tion procedure, and combine them to build C:

c~=g (22)

which allows for the determination of A except for -a com-
mon factor Q, the one-dimensional ambiguity. Let A be an
arbitrary solution of the infinity of possible solutions, which
are all proportional to the original A, A = a A. Substituting
B in (11)

1
Nx = ~i-’nzxivq’aivl. i-lMxM; liv1 (23)

proves that A- is sufficient for the system error removal. It
should be noted that this degree of freedom can be used to
enforce the determinant of A- to unity. Even under this
assumption in general det ~ + 1 remains.

C. Exploiting Redundancies (Self Calibration)

While- there remain seven unknowns to be determined in
~ and B, the measurement of the three two-port standards
yields 12 equations. This redundancy is the reason that it is
not necessary to know all the parameters of all the stan-
dards. Ultimately it is possible to evaluate five different
quantities. In the following it will be shown how to exploit
this redundancy.

For one of the standards, e.g. Nl, all parameters are
supposed to be known. The second standard is assumed to
be partly unknown. This is considered by denoting its trans-

TABLE I

N1 Fully known N,
N2 Maximum of two free parameters N2(~1, xz)
N3 Maximum of three free parameters N3(YI, YZ, Y3)

mission parameters as known functions of the unknowns:

(~z,ll(x) ~2,12(z)
N2(z) =

N2,21(Z) ~2,22(z) )

with ~=(xl,””.,x~)t, n=N. (24)

Therefore P is also a function of ~. Recalling the similarity
of Q and P(z), the most effective way is to exploit the trace
and determinant invariance, i.e.,

trace (P(&)) = trace(Q) and det(P(&)) =det(Q)

(25)

to develop two equations which must be satisfied by the
parameters of the standards and the measurements

P1l(~)+ P~~(~) = Q~~+Q22 (26)

P11(4)P22(~) – P12(~)P21(I) = Q11Q22 – Q12Q21. (27)

These two equations allow for the determination of two
unknown parameters z = (xl, x2)t in N2.

The matrix N3 is treated in the same manner:

(~3,11(~) ~3,12(~)
N@) =

‘3,21(Y) ‘3,22(2)
i

with y=(yl,. ... ym)~, nGN. (28)

The similarity of the matrices U and V provides two equiva-
lent equations as well:

u,l(y)+ u22(y)=v11+v22 (29a)

U,*( y)uz~(y) – u@)u21(y) = ~llJ”22 – J“12~21. (Zgb)

Two additional equations are derived by combining NJ and

N2, which now is known from the previous step:

Rll(~)+ R22(y)=~ll+~22 (30a)

(R1,(Y)R22(Y)- R12(Y)R2,(Y) =W,1W22-W12W2,)

(30b)

with abbreviations similar to (13):

R = N3N~’ and W= M3M;1. (31)

Equation (30b) is set in parentheses because it provides the
same information as (29b). Thus three equations remain,
limiting the degrees of freedom in N3( y) to three, ~ =

(Y,, Y2, Y3)’. Therefore the standards hav; to meet the re-
quirements given in Table 1,

This maximum of five unknowns in the standa~ds ~nd the
number of seven effective calibration standards A ij, B,, fully
exploit the twelve equations in (12). Based on the results
condensed in Table I, calibration procedures with practical
usefulness will be derived.

D. The Procedures TAN and TLN

The first two-port must be fully known. The simplest
two-port meeting this condition is the thru connection of the



EUL AND SCHIEK A GENERALIZED THEORY AND NEW CALIBRATION PROCEDURES 727

two measurement ports:

()~=lo
1 01”

(32)

All procedures which use this standard shall have a “T” as
the first letter in their acronym. Without loss of generality
they are the basis for the following explanations. However,
“L” procedures are possible and will be explained later.

For the second standard, a transmission line of known
characteristic impedance is one realization:

1

(

~–2yl_p2 ~(l_e-w)

‘2= ql- #) _ ~(1 _ ~-w) 1 – /7e-w
)

ZL – Z.
with p =

z~ + Z.
(33)

where Z~ denotes the actual characteristic impedance of the
line and ZO is the reference impedance. The quantity y is
the complex propagation constant of the transmission line
and 1 its mechanical length.

Substituting (32) and (33) into (26), we find

which is not a function of p, whether known or unknown.
Equation (27) provides no further information because re-
ciprocity is already introduced by (33). Thus it cannot be
applied to evaluate the characteristic impedance of the
transmission line. But its transmission coefficient may be left
unknown since it can be determined by (34) whether the
impedance is known or not. However, the solution of (34) is
ambiguous as – Y1 and + -y/ are interchangeable. To find
the true value, the passivity criterion requiring

le-711<1 (35)

could be used. In practice this criterion is not reliable
because of the low line loss; even small measurement errors
such as noise or quantization errors are able to influence the
small deviation from unity in a way that leads to the wrong
decision. Thus the estimation of the electrical length of the
line is recommended:

)sign ( arg ( e *71)) = sign ( q~~~i~~~~. (36)

This criterion is very reliable apart from the regions of
uncertainty around 0’ and 18W, which are of minor interest
as they must be avoided anyway. This is due to the fact that
the second standard has to be different from the first and the
line has to satisfy the conditions

In practice it is useful to define the line to be matched,

P = 0, thus implying that its characteristic impedance be-
comes the reference for the calibration.

Although transmission lines can be produced with high
accuracy they show the drawback of limited bandwidth. At

lower frequencies the line tends to become too long and at
higher frequencies it exhibits, depending on the frequency,
periodically repeating ranges of unreliable calibration.

If a transmission line is used as second calibration sta,n-
dard it will be denoted by an “L” in the procedure’s acronym.

While maintaining the property of being matched, we will
show that realizations other than transmission lines are pos-
sible and circumvent the problems shown above. As the
standard is allowed to be nonreciprocal we start with the
transmission matrix

‘2=(N:11 (22)
(38)

The substitution of (38) into (26) yields the two equations

N,,ll + N2,22 = Qll + Q,, and N2,11N2,22 = det Q. (39)

Due to the symmetry in (39) it is obvious that it holds for
interchanged N2, II and N2,22 as well. However these param-
eters may be left unknown and will be calculated via (;9).
For passivity of N2 the evaluated elements N2, II and N2,22
must satisfy

lfi2,111<l and 1~2,,21>1 (40)

a very reliable criterion for the selection, if N2 is designed to
have significant losses. Therefore the need for prior informa-
tion concerning N, is avoided and the argument of the
transmission is allowed to have any value.

We will denote this choice of the second calibration stan-
dard with an “A” for attenuation and summarize the advzm-
tages:

1) no estimation of the transmission required,
2) attenuation and phase shift may be arbitrav and un-

known, .

3) no lower band limit,
4) no periodically repeating ranges of unreliable calibra-

tion.

It should be noted that in either case, “L” or “A”, reciproc-
ity is not required, but normally is given. Thus the proce-
dures provide a measure of the calibration performance by
building a first figure of merit using the values evaluated by
the self-calibration procedure, such as

F1=l–det I$2. (41)

For a good calibration F, should be as small as possible.
In the last calibration step standard N3 is measured. We

substitute (32) and (38) in (29) and (30), yielding

N3,11 + N3,Z2 = V,l + V,, (42)

N2,22N3,11+ N2, I IM,22 = N2, I{ N2,22(J711 + W22) (43)

N3,11N3,22 – N3,12N3,zI = det V (44)

where Nz is known from the step before. Equations (42)-(44)
must be satisfied by N3, 1,, N3,22, and N3, 12N3,21, Thus these
parameters may be left unknown and evaluated via (42)-(414).
The product can be separated if either of the factors is
known or if N3 is symmetrically reflecting. In the latter case,
which is of pmctical usefulness, one has to remove the sign
ambiguity of the square root by an estimation of the sign of
the reflection. This is the only piece of information needed.

As the first two standards are well matched, for proper
calibration, N3 should be highly reflecting. The standard may
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be nonreciprocal as well, but in the reciprocal case the
procedure protides a further figure of merit,

F2=l–det N3 (45)

which also should be as small as possible.
In the following this realization of N3 will be referred to

by an “N” and can be combined with both the line (TLN)
and the attenuation (TAN). Here TLN is the special case of
vanishing attenuation in the more general TAN procedure.
The order of the letters in the acronym is chosen according
to the increasing number of unknown parameters in the
standards. Unfortunately, in the following this leads to a
conflict with the well-known TRL procedure.

E. The Procedures TAR, TAS, TLR, and TLS

The following procedures use two-ports without transmis-
sion for the third calibration standards, actually one-ports.
This standard can be realized either by using two reflections,
which are sufficiently equal, or by measuring one reflection
subsequently at each measurement port. The latter is as-
sumed for the mathematical clerivation. Based on (4) and (5)
we define

m; Bll + B12r~ def
—— = rB

mj = B21 + B22r~

with

a 3A a{B
~R=— and r~ = —.

b 3A b{~

(46b)

(47)

Taking (12a) the B,j are eliminated in (46b). Then using the
abbreviations

c1 = M1,22 + fwl,21rB C2 = JWI,12 + &fl,llrB (48)

equations (46) can be reorganized to fit into the matr.k
notation (14) and assembled with the two independent rows
of (14) to provide an equivalent to (22):

C(r~)A = O with

1 the two independent ~

C(r~) =

1

rows of ~ in (15)

!

, (49)
r~ 1 – rAr~ – rA

c, clr~ – c~ —czr~

Now we have to decide whether we use a TxS or a TxR
procedure.

First we treat the more general TxR case. Apart from the
trivial solution A,j = O this homogeneous equation is only
satisfied if the determinant vanishes. Thus,

[

(c1c1,3+ c2c11)(c24+c22rA) ‘/2
det C(r~)=O~r~= —

(c1C~4+ c, C22)(C13+C,,r~) 1
(50)

must be fulfilled by the reflection r~ of the third calibration
standard, In (50) the Cij are elements of C and the Ci are
given by (48). If (50) is used to determine the unknown
reflection, the sign ambiguity of the square root must be
removed, This small piece of prior information has to be

provided by the user. Thus the preferred realization is a
short or an open circuit since they allow for an easy and
reliable sign estimation. After the calculation of FR, C in (49)
is determ-ined and the calibration proceeds with the evalua-
tion of A as described above.

In order to prove the capability of self-calibration, a well-
defined calibration standard is applied and a third figure of
merit,

(51)

is introduced, where r~ is the value from the data sheet and
?“ the value evaluated via (50). The performance will not
degrade if reflections of minor quality are used. Procedures
using an unknown reflection are indicated by an “R” in the
scheme, actually TAR and TLR. The latter (TLR) has previ-
ously been mentioned in the literature as TRL2 in [4] and
appears as a special case of this general concept.

Second we will treat the TxS procedures. They assume the
third standard as to be known, simply but not necessarily to
be a short. Due to the knowledge of r~ = – 1 (49) is overde-
termined because equations (46) are not independent of
each other. Thus measurement requirements can be reduced
by omitting one of them; i.e., the short has only to be
measured at one measurement port and step (50) is skipped.
Procedures using the short “S” are TAS and TLS. Here TLS
is quite similar to the TSD procedure [3], but it overcomes
the necessity of connecting the short at both ports, as is
required in [3] and [6].

F. The Procedures TMN, TMR, and TMS

First we will treat the TMR and TMS procedures, which
employ two standards without transmission; i.e., the second
and the third one become one-ports. As the second standard
only has its degrees of freedom in transmission, its reflection
has to be known. Without loss of generality we assume one
reflection r~ measured at each measurement port in turn.
The third standard is the same as in the other TxR proce-
dures already explained. With the measurements

ml, A11r~+A12 d~f
—.

A21r~ + A22
= r~l

m21

(52)

rn12 ~llrR+A12 def
—.

mzz A,1r~+A22
= rA2

m $2 Bll + B12rR dcf
—— = r82

m 42 B2i i- B2zrR
(53)

and the abbreviations due to (12a):

c1 = A41,22+ kfl,21r1jl c2=kf1,12+~1,11rB1

c~= MI,22 + kfl,21r,j2 C4=fkfl, t2+fw1,11rB2 (54)

2It k nut the intention to alter the common, well-established termi-
nology h this specitd cuse. But is it is proposed to maintain the scheme
of notation for the whule family of procedures for reasons that are a
result of the logic of the derivtttion explained above.
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we obtain a homogeneous system of equations:

C(r~)~ = O with

~,~ I - r~lr~ - r~l )

In practice the known reflection is realized as a matched
load r~ = O, leading to an “M” in the acronym. Depending
on the frequency and on the accuracy desired, a fixed load or
a sliding load with a circle fitting procedure can be applied.

The further steps are as described for TAR with

[

(C1C4- c2c3)(rAl - rA2) “2 (56)
det C(rJ=O-r~=

(c2-c1rA2)(c4 -c3rAl) 1
as the counterpart to (50).

As with the TAR procedure, in the TMR procedure there
exists a version which replaces the unknown reflection stan-
dard with a known reflection. This procedure, TMS, has the
advantage that the short (or any other known reflection) has
to measured at only one measurement port.

Finally we treat the TMN procedure. From a mathemati-
cal point of view, this method can be regarded as a TAR
procedure with switched meanings of the second and the
third standard and rearranged degrees of freedom. To apply
the TMN procedure, use the TAR algorithm but connect the
N-standard instead of the A-standard and assume, for the
moment, that it might be well matched. Thus the calibration
is related to an unknown reference impedance introduced by
the standard N. Then employ the M-standard instead of the
R-standard and solve for the reflection via (50). Having this
vaIue, one is able to evaluate the above-mentioned reference
impedance. With this information the parameters of N are
renormalized to the desired reference impedance. Now pro-
ceed with TAR as usual,

Similar to the TAx procedures the TMx show no inherent
band limit. However, they can be viewed as a special case of
infinite attenuation in TAx,

G. Deriving Lm Procedures from Tu

Another convenient realization of the first calibration
standard is a known, well-matched transmission line:

N1 = (ewfl o

0 )e+w~l “
(57)

For the special case of TRL [4] this idea has been described
in detail in [10].

For completeness in the following a brief description will
be given of how to adopt this idea to the whole family of
calibration procedures discussed here.

The calibration steps are performed as iq Txx without any

changes, yielding the matrices A- and fi. Obviously the
reference planes w~ll be l~cated in the center of 1,, Thus the
desired matrices A and B are simply found through

~=~-1

(

—;7, [,

with L = e o

)
(58)

li=BL o’ e++y,fl “

To perform this transformation either we have to know y, /1
directly or we must know r~ to allow the evaluation of -y,1,

-19.6

% -19,8
~

~

@ .~(),z—
Manufacturer’s data

-20,4 I

I I
2 3 4 5 6 -/ 6 9 10 11 1?

f (GHz)

Fig. 3. The transmission of the second standard evaluated via self.
calibration (solid line) in comparison with the manufacturer’s data
(black dots).

via

(59)

where ?~ is the value from the TxR procedure. For TxN,
S3,II takes the position of ?~, In the special case where N2 is
a transmission line with the same propagation constant as
Nl, but different length (LLx), a knowledge of arg(r~) is
sufficient [10].

111. EXPERIMENTAL RESULTS

The following measurements have been carried out on a

Hewlett Packard HP851O with APC-7 standards over a fre-

queney range of 2 to 12 GHz. Since, to the authors’ knr)wl-

edge [12], the equipment has no capability for the ftill variety

of the new calibration procedures, the raw data for the mi

(the unratioed values ai and bi can be taken for that pur-
pose) have been read out and processed on an external
personal computer.

The figure of merit F, is the first indicator for the calibra-
tion reliability we examine. It is already available after the
second calibration step of each xAx and xLx procedure. In
this TAx example it remains under 0.035 over the full band-
width, promising a good calibration. In order to check the
~ata for F, against other measurements, the transmission
Sz,zl calculated via self-calibration is plotted in Fig. 3 as well
as the manufacturer’s data, the black dots. The figure shows
very good agreement,

Next we test the self-calibration behavior in determining
the unknown reflection r~. Therefore a precision short is
used and the figure of merit F3 is evaluated, which is well
below 0,02. It is instructive to plot the angle of ?~ / r~ (Fig.
4), which can be compared directly with the manufacturer’s
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2, 1

Fig. 4. The difference between the angle of 7R evaluated via self-
calibration and the ideal value r~. Specified uncertainty, 0.5°.

-40’ J

,“~n— during the self-calibration by TAN
measured with a fully cahbratecl

,A network analyzer (12-Term)

(4 Ymml
—— II ‘ill \! i

I I
2 3 4 5 6 9 10 11 12

f fGHz) 8

Fig, 5, The reflection of the third standard evaluated via se]f-ca]ibra.
tion in comparison with a measurement with a fully calibrated network
analyzer. The quality of the self-calibration result for the transmission
quantities is like that of the second standard shown in Fig. 4.

specification of the uncertainty of + 0.5°. Fig. 4 demonstrates
the good performance of the self-calibration. It should be
stressed that the performance will not degrade if the quality
of the short gets worse, because it is allowed to be unknown.
However, it must be the same reflection at both ports. In
anticipation of Fig. 7 it should be mentioned that the as-
sumption of a precisely known short does not result in a
better performance.

The TAN procedure is a good candidate for showing the
errors to be expected if the third standard is not highly
reflecting. An offset air-line line (Fig. 5) with 25 Q character-
istic impedance has been used to realize N3, The transmis-
sions evaluated via self-calibration are just as good as for the
second standard Nz and therefore are not plotted. The
crucial step is the evaluation of the reflections. As can be
seen from Fig. 5, the errors become quite high if the magni-
tude of the reflection becomes too small. Approximately
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Fig. 6. Comparison of the error removal performance of different
calibration procedures. Device under test: 50 dB attenuator.

these errors are to be expected in subsequent measurements.
For this step the measure of reliability is Fz <0.04.

As one example to prove the measurement capability the
magnitudes of the scattering parameters SI ~ and Szl of a 50
dB attenuator are plotted in Fig, 6. The performance of the
arguments is equivalent. The difference between the 12-term
and TMR procedures are, owing to the good standards,
beyond the resolution of the drawing. The deviations are
smaller than 0.1 dB for reflection and transmission as well
over the full dynamic range. The dip @ the curve at 4 GHz is
due to the matched load used by these procedures. But,
considering the absolute values of S1~ and the specification

lr~l < – 34 dB, there is no cause for criticism. To measure
very small reflections one should prefer a sliding load or
choose one of the other procedures. If the accuracy of the
standards is not as good as in this example the performance
of the 12-term procedure will degrade significantly faster
than the TMR performance. This is because 12-term is based
on three exactly known one-port standards, but TMR only
on the knowledge of one of them.

In contrast to the broad-band behavior of the new proce-
dures presented, the loci for the TLR ( = TRL) procedure
show the expected mnges of unreliable calibration. The fast
periodicity is due to the length of the line of approximately
100 mm.

In order to find an answer to the question whether it is
advantageous if known standards instead of unknowns are
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Fig. 7. Thedifference between corresponding TxRand TxSproce-
dures

used, we compare the results of corresponding TxRand TxS
procedures. Fig. 7 shows the differences in the magnitude of
Sll for the same measurements as plotted in Fig. 6. The
difference in the argument is below 1°. As can be taken from
(46) in principle xxR and xxS show no difference in transmis-
sion measurements. Even for the high-quality shorts used
here and the small absolute values shown in Fig. 6 the
difference of less than 0.1 dB does not justify the application
of TxS procedures. However, they can be highly important in
many practical situations, e.g. if the two ports have connec-
tors of different sex. Another remedy in this situation is to
employ additional adapters [10].

IV. CONCLUSION

A general theory for network analyzer calibration has
been presented. Based on this theory a family of calibration
procedures has been presented, namely TAN, TLN, TMN,
TAR, TLR, TMR, TAS, TLS, and TMS and their corre-
spending procedures LAN, LLN, LMN, LAR, ‘LLR, LMR,
LAS, LLS, and LMS. Compared with the well-known 12-term
procedure, the new methods employ fewer standards, which
in addition may be partly unknown, In contrast to the TRL
and TSD procedures the methods xh and xMx are in
principle of unlimited bandwidth. The good performance of
all the procedures has been shown experimentally. This wide
spectrum of procedures using different calibration standards
provides the opportunity to choose an optimal algorithm for
any
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